
m01 – Sorting m01zac

nag make indices (m01zac)

1. Purpose

nag make indices (m01zac) inverts a permutation, and hence converts a rank vector to an index
vector, or vice versa.

2. Specification

#include <nag.h>
#include <nag_stddef.h>
#include <nagm01.h>

void nag_make_indices(size_t ranks[], size_t n, NagError *fail)

3. Description

There are two common ways of describing a permutation using an Integer vector ranks. The first
uses ranks: ranks[i] holds the index value to which the (i + 1)th data element should be moved in
order to sort the data; in other words its rank in the sorted order. The second uses indices: ranks[i]
holds the current index value of the data element which would occur in (i + 1)th position in sorted
order. For example, given the values

3.5 5.9 2.9 0.5

to be sorted in ascending order, the ranks would be

2 3 1 0

and the indices would be

3 2 0 1.

The m01d- functions generate ranks, and the m01e- functions require indices to be supplied to
specify the re-ordering. However if it is desired simply to refer to the data in sorted order without
actually re-ordering them, indices are more convenient than ranks (see the example program).
nag make indices can be used to convert ranks to indices, or indices to ranks, as the two
permutations are inverses of one another.

4. Parameters

ranks[n]
Input: ranks must contain a permutation of the Integers 0 to n − 1.
Output: ranks contains the inverse permutation.

n
Input: the length of the array ranks.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, n must not be less than 0: n = 〈value〉.

NE INT ARG GT
On entry, n must not be greater than 〈value〉: n = 〈value〉.
n is limited to an implementation-dependent size which is printed in the error message.

NE BAD RANK
Invalid ranks vector.
Elements of ranks contain a value outside the range 0 to n − 1 or contain a repeated value.
ranks does not contain a permutation of the Integers 0 to n − 1; on exit these elements are
usually corrupted.

[NP3275/5/pdf] 3.m01zac.1



nag make indices NAG C Library Manual

6. Further Comments

None.

7. See Also

None.

8. Example

The example program reads a matrix of real numbers and prints its rows with the elements of
the 1st column in ascending order as ranked by nag rank sort (m01dsc). The program first calls
nag rank sort (m01dsc) to rank the rows, and then calls nag make indices to convert the rank vector
to an index vector, which is used to refer to the rows in sorted order.

8.1. Program Text

/* nag_make_indices(m01zac) Example Program
*
* Copyright 1990 Numerical Algorithms Group.
*
* Mark 2 revised, 1992.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag_stddef.h>
#include <nagm01.h>

#ifdef NAG_PROTO
static Integer compare(const Pointer a,const Pointer b)
#else

static Integer compare(a,b)
Pointer a, b;

#endif
{
double x = *((double *)a);
double y = *((double *)b);
return (x<y ? -1 : (x==y ? 0 : 1));

}

#define MMAX 20
#define NMAX 20

main()
{
double vec[MMAX][NMAX];
size_t i, j, m, n, rank[MMAX];
static NagError fail;

fail.print = TRUE;
/* Skip heading in data file */
Vscanf("%*[^\n]");
Vprintf("m01zac Example Program Results\n");
Vscanf("%d%d", &m, &n);
if (m>=0 && m<=MMAX && n>=0 && n<=NMAX)

{
for (i=0; i<m; ++i)
for (j=0; j<n; ++j)
Vscanf("%lf", &vec[i][j]);

m01dsc((Pointer) vec, m, (ptrdiff_t)(NMAX*sizeof(double)), compare,
Nag_Ascending, rank, &fail);

if (fail.code != NE_NOERROR)
exit(EXIT_FAILURE);

m01zac(rank, m, &fail);
if (fail.code != NE_NOERROR)
exit(EXIT_FAILURE);

Vprintf("Matrix with rows sorted according to column 1\n");

3.m01zac.2 [NP3275/5/pdf]



m01 – Sorting m01zac

for (i=0; i<m; ++i)
{
for (j=0; j<n; ++j)
Vprintf(" %7.1f ", vec[rank[i]][j]);

Vprintf("\n");
}

exit(EXIT_SUCCESS);
}

else
{
Vfprintf(stderr, "Data error: program terminated\n");
exit(EXIT_FAILURE);

}
}

8.2. Program Data

m01zac Example Program Data
12 3
6.0 5.0 4.0
5.0 2.0 1.0
2.0 4.0 9.0
4.0 9.0 6.0
4.0 9.0 5.0
4.0 1.0 2.0
3.0 4.0 1.0
2.0 4.0 6.0
1.0 6.0 4.0
9.0 3.0 2.0
6.0 2.0 5.0
4.0 9.0 6.0

8.3. Program Results

m01zac Example Program Results
Matrix with rows sorted according to column 1

1.0 6.0 4.0
2.0 4.0 9.0
2.0 4.0 6.0
3.0 4.0 1.0
4.0 9.0 6.0
4.0 9.0 5.0
4.0 1.0 2.0
4.0 9.0 6.0
5.0 2.0 1.0
6.0 5.0 4.0
6.0 2.0 5.0
9.0 3.0 2.0

[NP3275/5/pdf] 3.m01zac.3


	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities


